Описание
Книга позволяет изучить науку о данных (Data Science) и применить полученные знания на практике. Она содержит краткий курс языка Python, элементы линейной алгебры, статистики, теории вероятностей, методов обработки данных. Приведены основы машинного обучения. Описаны алгоритмы k ближайших соседей, наивной байесовой классификации, линейной и логистической регрессии, а также модели на основе деревьев принятия решений, нейронных сетей и кластеризации. Рассмотрены приемы обработки естественного языка, методы анализа социальных сетей, основы баз данных, SQL и MapReduce.
Во втором издании примеры переписаны на Python 3.6, игрушечные наборы данных заменены на «реальные», добавлены материалы по глубокому обучению и этике данных, статистике и обработке естественного языка, рекуррентным нейронным сетям, векторным вложениям слов и разложению матриц.
Об авторе
Джоэл Грас работает инженером-программистом в компании Google. До этого занимался аналитической работой в нескольких стартапах. Активно участвует в неформальных мероприятиях специалистов в области науки о данных.
Формат: PDF, DjVu.
Во втором издании примеры переписаны на Python 3.6, игрушечные наборы данных заменены на «реальные», добавлены материалы по глубокому обучению и этике данных, статистике и обработке естественного языка, рекуррентным нейронным сетям, векторным вложениям слов и разложению матриц.
Об авторе
Джоэл Грас работает инженером-программистом в компании Google. До этого занимался аналитической работой в нескольких стартапах. Активно участвует в неформальных мероприятиях специалистов в области науки о данных.
Формат: PDF, DjVu.
Отзывы
Отзывов пока нет.